[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049488
Primes p such that p+16 is prime.
19
3, 7, 13, 31, 37, 43, 67, 73, 97, 151, 157, 163, 181, 211, 223, 241, 277, 331, 337, 367, 373, 433, 463, 487, 541, 547, 571, 577, 601, 631, 643, 661, 727, 757, 811, 823, 937, 967, 997, 1033, 1087, 1093, 1171, 1201, 1213, 1291, 1303, 1423, 1471, 1483, 1543
OFFSET
1,1
COMMENTS
Using the Elliott-Halberstam conjecture, Goldston et al. prove that there are an infinite number of primes here. - T. D. Noe, Nov 26 2013
REFERENCES
P. D. T. A. Elliott and H. Halberstam, A conjecture in prime number theory, Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69), pages 59-72, Academic Press, London, 1970.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms up to a(1000) by T. D. Noe)
D. A. Goldston, J. Pintz, and C. Y. Yildirim, Primes in Tuples I, arXiv:math/0508185 [math.NT], Aug 10 2005.
A. Granville and G. Martin, Prime number races, arXiv:math/0408319 [math.NT], Aug 24 2004.
EXAMPLE
7 and 7+16=23 are prime.
MATHEMATICA
Select[Range[1000], PrimeQ[#] && PrimeQ[#+16]&] (* Vladimir Joseph Stephan Orlovsky, Dec 25 2008 *)
Select[Prime[Range[250]], PrimeQ[#+16 ]&] (* Harvey P. Dale, Oct 30 2015 *)
PROG
(PARI) select(p->isprime(p+16), primes(100)) \\ Charles R Greathouse IV, Jul 08 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved