[go: up one dir, main page]

login
A047492
Numbers that are congruent to {0, 4, 5, 7} mod 8.
1
0, 4, 5, 7, 8, 12, 13, 15, 16, 20, 21, 23, 24, 28, 29, 31, 32, 36, 37, 39, 40, 44, 45, 47, 48, 52, 53, 55, 56, 60, 61, 63, 64, 68, 69, 71, 72, 76, 77, 79, 80, 84, 85, 87, 88, 92, 93, 95, 96, 100, 101, 103, 104, 108, 109, 111, 112, 116, 117, 119, 120, 124
OFFSET
1,2
FORMULA
G.f.: x^2*(4+x+2*x^2+x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Nov 06 2015
From Wesley Ivan Hurt, May 26 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = 2*n+(1+i)*(2*i-2+(1-i)*i^(2*n)-i^(-n)+i^(1+n))/4 where i=sqrt(-1).
a(2k) = A047535(k), a(2k-1) = A047615(k). (End)
E.g.f.: (2 - sin(x) - cos(x) + (4*x - 3)*sinh(x) + (4*x - 1)*cosh(x))/2. - Ilya Gutkovskiy, May 27 2016
Sum_{n>=2} (-1)^n/a(n) = (2-sqrt(2))*log(2)/8 + sqrt(2)*log(2+sqrt(2))/4 - Pi/8. - Amiram Eldar, Dec 23 2021
MAPLE
A047492:=n->2*n+(1+I)*(2*I-2+(1-I)*I^(2*n)-I^(-n)+I^(1+n))/4: seq(A047492(n), n=1..100); # Wesley Ivan Hurt, May 26 2016
MATHEMATICA
Table[2n+(1+I)*(2*I-2+(1-I)*I^(2n)-I^(-n)+I^(1+n))/4, {n, 80}] (* Wesley Ivan Hurt, May 26 2016 *)
a[n_] := 1 + n + Floor[n/2] + 2 Floor[(n - 2)/4];
Table[a[n], {n, 1, 62}] (* Peter Luschny, Dec 23 2021 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 4, 5, 7]]; // Wesley Ivan Hurt, May 26 2016
CROSSREFS
Sequence in context: A049649 A050575 A081452 * A240161 A023629 A331840
KEYWORD
nonn,easy
STATUS
approved