OFFSET
1,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-1).
FORMULA
G.f.: x*(2+x^2+x^3) / ( (x^2+1)*(x-1)^2 ). - R. J. Mathar, Nov 06 2015
From Wesley Ivan Hurt, May 27 2016: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>4.
a(n) = (1+i)*(4*n-4*n*i+i-1+i^(1-n)-i^n)/4 where i=sqrt(-1).
E.g.f.: (2 + sin(x) - cos(x) + (4*x - 1)*exp(x))/2. - Ilya Gutkovskiy, May 27 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*Pi/16 - (sqrt(2)-1)*log(2)/8 + sqrt(2)*log(2-sqrt(2))/4. - Amiram Eldar, Dec 25 2021
MAPLE
A047495:=n->(1+I)*(4*n-4*n*I+I-1+I^(1-n)-I^n)/4: seq(A047495(n), n=1..100); # Wesley Ivan Hurt, May 27 2016
MATHEMATICA
Table[(1+I)*(4n-4n*I+I-1+I^(1-n)-I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 27 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [2, 4, 5, 7]]; // Wesley Ivan Hurt, May 27 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved