[go: up one dir, main page]

login
Numbers that are congruent to {5, 6} mod 8.
0

%I #23 Dec 19 2021 04:32:20

%S 5,6,13,14,21,22,29,30,37,38,45,46,53,54,61,62,69,70,77,78,85,86,93,

%T 94,101,102,109,110,117,118,125,126,133,134,141,142,149,150,157,158,

%U 165,166,173,174,181,182,189,190

%N Numbers that are congruent to {5, 6} mod 8.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).

%F From _Vincenzo Librandi_, Aug 06 2010: (Start)

%F a(n) = a(n-1) + a(n-2) - a(n-3).

%F a(n) = 8*n - a(n-1) - 5, n > 1. (End)

%F G.f. x*(5+x+2*x^2) / ( (1+x)*(x-1)^2 ). - _R. J. Mathar_, Dec 07 2011

%F Sum_{n>=1} (-1)^(n+1)/a(n) = (2-sqrt(2))*Pi/16 + log(2)/8 - sqrt(2)*log(sqrt(2)+1)/8. - _Amiram Eldar_, Dec 19 2021

%t Select[Range[200], MemberQ[{5, 6}, Mod[#, 8]] &] (* _Amiram Eldar_, Dec 19 2021 *)

%Y Union of A004770 and A017137.

%K nonn

%O 1,1

%A _N. J. A. Sloane_