[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046670
Partial sums of A006530.
10
1, 3, 6, 8, 13, 16, 23, 25, 28, 33, 44, 47, 60, 67, 72, 74, 91, 94, 113, 118, 125, 136, 159, 162, 167, 180, 183, 190, 219, 224, 255, 257, 268, 285, 292, 295, 332, 351, 364, 369, 410, 417, 460, 471, 476, 499, 546, 549, 556, 561, 578, 591, 644, 647, 658, 665, 684
OFFSET
1,2
REFERENCES
Handbook of Number Theory, D. S. Mitrinovic et al., Kluwer, Section IV.1.
LINKS
K. Alladi and P. Erdős, On an additive arithmetic function, Pacific J. Math., Volume 71, Number 2 (1977), 275-294. MR 0447086 (56 #5401).
A. E. Brouwer, Two number theoretic sums, Stichting Mathematisch Centrum. Zuivere Wiskunde, Report ZW 19/74 (1974): 3 pages. [Cached copy, included with the permission of the author]
FORMULA
a(n) = Pi^2/12 * n^2/log n + O(n^2/log^2 n). [See Mitrinovic et al.] - Charles R Greathouse IV, Feb 19 2014
MATHEMATICA
Accumulate[Prepend[Table[FactorInteger[n][[-1, 1]], {n, 2, 100}], 1]] (* Harvey P. Dale, Jun 11 2011 *)
PROG
(Haskell)
a046670 n = a046670_list !! (n-1)
a046670_list = scanl1 (+) a006530_list -- Reinhard Zumkeller, Jun 15 2013
(PARI) gpf(n)=if(n<4, n, n=factor(n)[, 1]; n[#n])
a(n)=sum(k=1, n, gpf(k)) \\ Charles R Greathouse IV, Feb 19 2014
CROSSREFS
Sequence in context: A070881 A046669 A352773 * A131383 A219730 A373083
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms from James A. Sellers
STATUS
approved