[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A002088(n)/2.
7

%I #40 Mar 26 2021 08:44:25

%S 1,2,3,5,6,9,11,14,16,21,23,29,32,36,40,48,51,60,64,70,75,86,90,100,

%T 106,115,121,135,139,154,162,172,180,192,198,216,225,237,245,265,271,

%U 292,302,314,325,348,356,377,387,403,415,441,450,470,482

%N a(n) = A002088(n)/2.

%C a(n) = |{(x,y) : 1 <= x <= y <= n, x + y <= n, 1 = gcd(x,y)}| = |{(x,y) : 1 <= x <= y <= n, x + y > n, 1 = gcd(x,y)}|. - _Steve Butler_, Mar 31 2006

%C Brousseau proved that if the starting numbers of a generalized Fibonacci sequence are <= n (for n > 1) then the number of such sequences with relatively prime successive terms is a(n). - _Amiram Eldar_, Mar 31 2017

%H Giovanni Resta, <a href="/A046657/b046657.txt">Table of n, a(n) for n = 2..10000</a>

%H Alfred Brousseau, <a href="http://www.fq.math.ca/Scanned/10-6/brousseau2.pdf">A Note on the Number of Fibonacci Sequences</a>, The Fibonacci Quarterly, Vol. 10, No. 6 (1972), pp. 657-658.

%F a(n) = 1/2 + Sum_{i<j<=n, gcd(i, j) = 1} i/j. - _Joseph Wheat_, Feb 22 2018

%p a:=n->sum(numtheory[phi](k),k=1..n): seq(a(n)/2, n=2..60); # _Muniru A Asiru_, Mar 05 2018

%t Rest@ Accumulate[EulerPhi@ Range@ 56]/2 (* _Michael De Vlieger_, Apr 02 2017 *)

%o (PARI) a(n) = sum(k=1, n, eulerphi(k))/2; \\ _Michel Marcus_, Apr 01 2017

%o (GAP) List([2..60],n->Sum([1..n],k->Phi(k)/2)); # _Muniru A Asiru_, Mar 05 2018

%o (Python)

%o from functools import lru_cache

%o @lru_cache(maxsize=None)

%o def A046657(n): # based on second formula in A018805

%o if n == 0:

%o return 0

%o c, j = 0, 2

%o k1 = n//j

%o while k1 > 1:

%o j2 = n//k1 + 1

%o c += (j2-j)*(4*A046657(k1)-1)

%o j, k1 = j2, n//j2

%o return (n*(n-1)-c+j)//4 # _Chai Wah Wu_, Mar 25 2021

%Y Cf. A002088.

%Y Partial sums of A023022.

%K nonn

%O 2,2

%A _N. J. A. Sloane_