[go: up one dir, main page]

login
A046147
Triangle read by rows in which row n lists the primitive roots mod n (omitting numbers n without a primitive root).
6
1, 2, 3, 2, 3, 5, 3, 5, 2, 5, 3, 7, 2, 6, 7, 8, 2, 6, 7, 11, 3, 5, 3, 5, 6, 7, 10, 11, 12, 14, 5, 11, 2, 3, 10, 13, 14, 15, 7, 13, 17, 19, 5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 2, 3, 8, 12, 13, 17, 22, 23, 7, 11, 15, 19, 2, 5, 11, 14, 20, 23, 2, 3, 8, 10, 11, 14, 15, 18, 19, 21, 26
OFFSET
2,2
LINKS
T. D. Noe, Table of n, a(n) for n = 2..3119 (first 99 nonempty rows of triangle, flattened)
Eric Weisstein's World of Mathematics, Primitive Root.
EXAMPLE
n followed by primitive roots, if any:
1 -
2 1
3 2
4 3
5 2 3
6 5
7 3 5
8 -
9 2 5
10 3 7
11 2 6 7 8
12 -
13 2 6 7 11
...
MAPLE
f:= proc(n) local p, k, m, R;
p:= numtheory:-primroot(n);
if p = FAIL then return NULL fi;
m:= numtheory:-phi(n);
k:= select(i -> igcd(i, m) = 1, [$1..m-1]);
op(sort(map(t -> p&^t mod n, k)))
end proc:
f(2):= 1:
map(f, [$2..50]); # Robert Israel, Apr 28 2017
MATHEMATICA
a[n_] := Select[Range[n-1], GCD[#, n] == 1 && MultiplicativeOrder[#, n] == EulerPhi[n]& ]; Table[a[n], {n, 1, 30}] // Flatten (* Jean-François Alcover, Oct 23 2012 *)
PrimitiveRootList[Range[Prime[10]]]//Flatten (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 10 2016 *)
PROG
(PARI) a_row(r) = my(v=[], phi=eulerphi(r)); for(i=1, r-1, if(1 == gcd(r, i) && phi == znorder(Mod(i, r)), v=concat(v, i))); v \\ Ruud H.G. van Tol, Oct 23 2023
CROSSREFS
Cf. A001918, A046144 (row lengths), A046145, A046146.
Cf. A060749, A306252 (1st column), A306253 (last/maximum element)
Sequence in context: A124459 A283360 A256366 * A251865 A306196 A052369
KEYWORD
nonn,tabf
EXTENSIONS
Edited by Robert Israel, Apr 28 2017
STATUS
approved