[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of form x^2+17*y^2.
2

%I #30 Sep 08 2022 08:44:51

%S 17,53,149,157,281,293,349,353,409,461,509,569,593,613,661,733,797,

%T 829,937,977,1097,1237,1361,1381,1409,1453,1597,1709,1721,1733,1753,

%U 1777,1861,2053,2089,2129,2141

%N Primes of form x^2+17*y^2.

%C Apart from the first term, odd primes p such that (-17/p) = 1 and x^4 - x^2 = 4 has a solution mod p. - _Charles R Greathouse IV_, Nov 11 2012

%C All terms are in {1, 9, 13, 17, 21, 25, 33, 49, 53} mod 68, but this not sufficient for inclusion. - _Charles R Greathouse IV_, Nov 11 2012

%D David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.

%H Vincenzo Librandi and Ray Chandler, <a href="/A033213/b033213.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]

%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)

%t QuadPrimes2[1, 0, 17, 10000] (* see A106856 *)

%o (PARI) is(n)=if(kronecker(17,n)>0 && kronecker(-17,n)>0 && n>2 && isprime(n), kronecker(lift((1+sqrt(Mod(17,n)))/2),n)>0, n==17) \\ _Charles R Greathouse IV_, Nov 11 2012

%o (Magma) /* By first comment: */ [17] cat [p: p in PrimesInInterval(3,2200) | LegendreSymbol(-17, p) eq 1 and exists{x: x in ResidueClassRing(p) | x^4-x^2 eq 4}]; // _Bruno Berselli_, Nov 11 2012

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_.