[go: up one dir, main page]

login
A033183
a(n) = number of pairs (p,q) such that 4*p + 9*q = n.
6
1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2
OFFSET
0,37
COMMENTS
From Reinhard Zumkeller, Nov 07 2009: (Start)
In other words: number of partitions into 4 or 9;
a(n) <= A078134(n); a(A078135(n)) = 0;
a(A167632(n)) = n and a(m) < n for m < A167632(n). (End)
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, -1).
FORMULA
a(n) = [ 7 n/9 ]+1+[ -3 n/4 ].
G.f.: 1/((1-x^4)*(1-x^9)). - Vladeta Jovovic, Nov 12 2004
a(n) = a(n-4) + a(n-9) - a(n-13). - R. J. Mathar, Dec 04 2011
MATHEMATICA
CoefficientList[Series[1/((1-x^4)(1-x^9)), {x, 0, 80}], x] (* or *) LinearRecurrence[{0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, -1}, {1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1}, 80] (* Harvey P. Dale, Oct 13 2012 *)
CROSSREFS
Cf. A033182.
Sequence in context: A066922 A371244 A353835 * A351742 A090677 A161097
KEYWORD
nonn
AUTHOR
Michel Tixier (tixier(AT)dyadel.net)
STATUS
approved