[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A031940
Length of longest legal domino snake using full set of dominoes up to [n:n].
4
1, 3, 6, 9, 15, 19, 28, 33, 45, 51, 66, 73, 91, 99, 120, 129, 153, 163, 190, 201, 231, 243, 276, 289, 325, 339, 378, 393, 435, 451, 496, 513, 561, 579, 630, 649, 703, 723, 780, 801, 861, 883, 946, 969, 1035, 1059, 1128, 1153, 1225, 1251, 1326, 1353, 1431, 1459
OFFSET
1,2
FORMULA
C(n, 2) + n if n odd, C(n, 2) + n/2 + 1 if n even. - T. D. Noe, Nov 09 2006
a(n) = A204556(n+1) / (n+1). - Reinhard Zumkeller, Jan 18 2012
G.f.: -x*(1+2*x+x^2-x^3+x^4) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Aug 13 2012
a(n) = ((-1)^n*(2 - n) + (2 + n + 2*n^2))/4. - G. C. Greubel, Jun 15 2018
EXAMPLE
E.g., for n=4 [ 1:1 ][ 1:2 ][ 2:2 ][ 2:3 ][ 3:3 ][ 3:1 ][ 1:4 ][ 4:4 ][ 4:2 ].
MATHEMATICA
Rest[CoefficientList[Series[x*(1 + 2*x + x^2 - x^3 + x^4)/((1 + x)^2*(1 - x)^3), {x, 0, 50}], x]] (* or *) Table[((-1)^n*(2-n) + (2+n+2*n^2))/4, {n, 1, 50}] (* G. C. Greubel, Jun 15 2018 *)
PROG
(PARI) for(n=1, 60, print1(((-1)^n*(2 - n) + (2 + n + 2*n^2))/4, ", ")) \\ G. C. Greubel, Jun 15 2018
(PARI) Vec(-x*(1+2*x+x^2-x^3+x^4) / ( (1+x)^2*(x-1)^3 ) + O(x^60)) \\ Felix Fröhlich, Jun 18 2018
(Magma) [((-1)^n*(2 - n) + (2 + n + 2*n^2))/4: n in [1..60]]; // G. C. Greubel, Jun 15 2018
CROSSREFS
Sequence in context: A049991 A368611 A143981 * A007187 A337502 A082004
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected by T. D. Noe, Nov 09 2006
More terms from Felix Fröhlich, Jun 18 2018
STATUS
approved