[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030289
a(n+1) is the next larger cube with no digits in common with a(n), a(0) = 0.
3
0, 1, 8, 27, 64, 125, 343, 512, 4096, 5832, 64000, 91125, 300763, 941192, 3375000, 8489664, 13312053, 86444696669696, 100175333300307, 488224224494488, 510657175657000, 2233398984434344, 5177717000000000, 6393843393228864
OFFSET
0,3
COMMENTS
From a(24) on, even-indexed terms are powers of 1000, odd-indexed terms are the next larger cube to a(n-1)*20/9 with no digit 0 or 1, cf. A030290. - M. F. Hasler, Nov 12 2017
LINKS
FORMULA
a(n) = A030290(n)^3. - David W. Wilson, Nov 08 2017
MATHEMATICA
bb={0}; idi1=IntegerDigits[0]; Do[idi=IntegerDigits[r=i^3]; If[Intersection[idi, idi1]=={}, bb={bb, r}; idi1=idi], {i, 1, 100000}]; fla=Flatten[bb] (* Zak Seidov, Feb 17 2005 *)
Nest[Append[#, Block[{k = Last@ # + 1, m = IntegerDigits[Last[#]^3]}, While[IntersectingQ[IntegerDigits[k^3], m], k++]; k]] &, {0}, 23]^3 (* Michael De Vlieger, Nov 13 2017 *)
PROG
(PARI) next_A030289(n, D(n)=Set(digits(n)), S=D(n))={if(n>6e15, S[1]&&return(1000^(logint(n, 1000)+1)); n=n*20\9); for(k=sqrtnint(n, 3)+1, oo, #setintersect(D(k^3), S)||return(k^3))} \\ M. F. Hasler, Nov 12 2017
CROSSREFS
Squares whose digits do not appear in previous term: A030288.
Primes whose digits do not appear in previous term: A030284.
Cf. A030290: cube roots of the terms.
Sequence in context: A052064 A352049 A125496 * A111131 A111103 A076969
KEYWORD
nonn,base
STATUS
approved