[go: up one dir, main page]

login
A038725
a(n) = 6*a(n-1) - a(n-2), n >= 2, a(0)=1, a(1)=2.
12
1, 2, 11, 64, 373, 2174, 12671, 73852, 430441, 2508794, 14622323, 85225144, 496728541, 2895146102, 16874148071, 98349742324, 573224305873, 3340996092914, 19472752251611, 113495517416752, 661500352248901
OFFSET
0,2
COMMENTS
From Wolfdieter Lang, Feb 26 2015: (Start)
The sequence {2*a(n+1)}_{n >= 0}, gives all positive solutions y = y2(n) = 2*a(n+1) of the second class of the Pell equation x^2 - 2*y^2 = -7. For the corresponding terms x = x2(n) see A255236(n).
See A255236 for comments on the first class solutions and the relation to the Pell equation x^2 - 2*y^2 = 14. (End)
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.
LINKS
I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), pp. 181-193.
Seyed Hassan Alavi, Ashraf Daneshkhah, Cheryl E Praeger, Symmetries of biplanes, arXiv:2004.04535 [math.GR], 2020. See x'(n) in Lemma 7.9 p. 21.
E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
Tanya Khovanova, Recursive Sequences
FORMULA
a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3); a(n) = ((4-sqrt(2))/8)*(3+2*sqrt(2))^(n-1)+((4+sqrt(2))/8)*(3-2*sqrt(2))^(n-1). - Antonio Alberto Olivares, Mar 29 2008
Sequence satisfies -7 = f(a(n), a(n+1)) where f(u, v) = u^2 + v^2 - 6*u*v. - Michael Somos, Sep 28 2008
G.f.: (1 - 4*x) / (1 - 6*x + x^2). a(n) = (7 + a(n-1)^2) / a(n-2). - Michael Somos, Sep 28 2008
From Wolfdieter Lang, Feb 26 2015: (Start)
a(n) = S(n, 6) - 4*S(n-1, 6), n>=0, with the Chebyshev polynomials S(n, x) (A049310), with S(-1, x) = 0, evaluated at x = 6. S(n, 6) = A001109(n-1). See the g.f. and the Pell equation comment above.
a(n) = 6*a(n-1) - a(n-2), n >= 1, a(-1) = 4, a(0) = 1. (See the name.) (End)
From Wolfdieter Lang, Mar 19 2015: (Start)
a(n+1) = sqrt((A255236(n)^2 + 7)/2)/2, n >= 0.
a(n+1) = (A038761(n) + A038762(n))/2, n >= 0. See the Mar 19 2015 comment on A054490. - Wolfdieter Lang, Mar 19 2015
E.g.f.: exp(3*x)*(4*cosh(2*sqrt(2)*x) - sqrt(2)*sinh(2*sqrt(2)*x))/4. - Stefano Spezia, May 01 2020
EXAMPLE
n = 2: a(3) = sqrt((181^2 + 7)/2)/2 = 64.
a(3) = (53 + 75)/2 = 64. - Wolfdieter Lang, Mar 19 2015
MAPLE
a[0]:=1: a[1]:=2: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..20); # Zerinvary Lajos, Jul 26 2006
MATHEMATICA
Union[Flatten[NestList[{#[[2]], #[[3]], 6#[[3]]-#[[2]]}&, {1, 2, 11}, 25]]] (* Harvey P. Dale, Mar 04 2011 *)
LinearRecurrence[{6, -1}, {1, 2}, 30] (* Harvey P. Dale, Jun 12 2017 *)
PROG
(PARI) {a(n) = real((3 + 2*quadgen(8))^n * (1 - quadgen(8) / 4))} /* Michael Somos, Sep 28 2008 */
(PARI) {a(n) = polchebyshev(n, 1, 3) - polchebyshev(n-1, 2, 3)} /* Michael Somos, Sep 28 2008 */
CROSSREFS
Cf. A001653 and A001541. Cf. A001109.
A038723(n) = a(-n).
Sequence in context: A362799 A179120 A373890 * A161947 A349023 A001565
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, May 02 2000
STATUS
approved