[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A037059
Smallest prime containing exactly n 3's.
19
2, 3, 233, 2333, 23333, 313333, 3233333, 31333333, 333233333, 3233333333, 23333333333, 333313333333, 3333333333383, 33133333333333, 323333333333333, 1333333333333333, 23333333333333333, 333333133333333333, 3333313333333333333, 33313333333333333333
OFFSET
0,1
COMMENTS
For almost all n >= 0, a(n) equals [10^(n+1)/3] with one of the (first) digits 3 replaced by a digit 1 or 2. We conjecture that in the few other cases (e.g., for n = 12, 119, ...) the statement holds with some digit 3 replaced by a digit among {4, 5, 7, 8}, except for the special case a(1) = 3. - M. F. Hasler, Feb 22 2016
LINKS
M. F. Hasler, Table of n, a(n) for n = 0..200; a(1) through a(100) from Harvey P. Dale.
MATHEMATICA
f[n_, b_] := Block[{k = 10^(n + 1), p = Permutations[ Join[ Table[b, {i, 1, n}], {x}]], c = Complement[Table[j, {j, 0, 9}], {b}], q = {}}, Do[q = Append[q, Replace[p, x -> c[[i]], 2]], {i, 1, 9}]; r = Min[ Select[ FromDigits /@ Flatten[q, 1], PrimeQ[ # ] & ]]; If[r ? Infinity, r, p = Permutations[ Join[ Table[ b, {i, 1, n}], {x, y}]]; q = {}; Do[q = Append[q, Replace[p, {x -> c[[i]], y -> c[[j]]}, 2]], {i, 1, 9}, {j, 1, 9}]; Min[ Select[ FromDigits /@ Flatten[q, 1], PrimeQ[ # ] & ]]]]; Table[ f[n, 3], {n, 1, 18}]
Table[Sort[Flatten[Table[Select[FromDigits/@Permutations[Join[{n}, PadRight[{}, i, 3]]], PrimeQ], {n, 0, 9}]]][[1]], {i, 20}] (* Harvey P. Dale, Feb 28 2015 *)
PROG
(PARI) A037059(n)={if(n==1, 3, my(t=10^(n+1)\3); forvec(v=[[-1, n], [-2, -1]], ispseudoprime(p=t+10^(n-v[1])*v[2]) && return(p)); forvec(v=[[0, n], [1, 5]], ispseudoprime(p=t+10^v[1]*v[2]) && return(p)))} \\ M. F. Hasler, Feb 22 2016
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Jan 04 1999
EXTENSIONS
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 23 2003
More terms and a(0) = 2 prefixed by M. F. Hasler, Feb 22 2016
STATUS
approved