Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Mar 12 2016 19:50:34
%S 1,4,12,34,85,203,454,985,2060,4205,8363,16298,31103,58319,107471,
%T 195037,348795,615550,1072706,1847867,3148444,5309948,8869172,
%U 14680261,24090035,39210436,63327665,101527253,161626560,255579456,401556210,627039569,973374176
%N Number of partitions of 5n such that cn(0,5) <= cn(1,5) = cn(4,5) <= cn(2,5) = cn(3,5).
%C Alternatively, number of partitions of 5n such that cn(0,5) <= cn(2,5) = cn(3,5) <= cn(1,5) = cn(4,5).
%C For a given partition, cn(i,n) means the number of its parts equal to i modulo n.
%H <a href="/wiki/Partitions_of_5n">Index and properties of sequences related to partitions of 5n</a>
%F a(n) = A202087(n) + A036883(n)
%F a(n) = A036884(n) + A036888(n)
%p mkl:= proc(i,l) local ll, mn, x; ll:= applyop(x->x+1, irem(i,5)+1, l); mn:= min(ll[]); `if`(mn=0, ll, map(x->x-mn, ll)) end:
%p g:= proc (n,i,t) if n<0 then 0 elif n=0 then `if`(t[1]<=t[2] and t[2]=t[5] and t[5]<=t[3] and t[3]=t[4], 1, 0) elif i=0 then 0 elif i=1 then g(0, 0, [t[1], t[2]+n, t[3], t[4], t[5]]) elif i=2 then `if`(t[3]>t[4], 0, g(n-2*(t[4]-t[3]), 1, [t[1], t[2], t[4], t[4], t[5]])) else g(n,i,t):= g(n,i-1,t) +g(n-i,i, mkl(i,t)) fi end:
%p a:= n-> g(5*n, 5*n, [0,0,0,0,0]):
%p seq(a(n), n=1..15); # _Alois P. Heinz_, Jul 02 2009
%t mkl[i_, l_] := Module[{ll, mn, x}, ll = MapAt[#+1&, l, Mod[i, 5]+1]; mn = Min[ll]; If[mn==0, ll, Map[#-mn&, ll]]]; g[n_, i_, t_List] := g[n, i, t] = Which[n<0, 0, n == 0 , If[t[[1]] <= t[[2]] && t[[2]] == t[[5]] && t[[5]] <= t[[3]] && t[[3]] == t[[4]], 1, 0], i==0, 0, i==1, g[0, 0, {t[[1]], t[[2]]+n, t[[3]], t[[4]], t[[5]]}] , i==2, If[t[[3]]>t[[4]], 0, g[n-2*(t[[4]]-t[[3]]), 1, {t[[1]], t[[2]], t[[4]], t[[4]], t[[5]]}]], True, g[n, i-1, t] + g[n-i, i, mkl[i, t]]]; a[n_] := g[5*n, 5*n, {0, 0, 0, 0, 0}]; Table[a[n], {n, 1, 15}] (* _Jean-François Alcover_, Jul 29 2015, after _Alois P. Heinz_ *)
%K nonn
%O 1,2
%A _Olivier Gérard_
%E a(10)-a(31) from _Alois P. Heinz_, Jul 02 2009
%E Edited by _Max Alekseyev_, Dec 11 2011
%E a(32)-a(33) from _Alois P. Heinz_, Mar 12 2016