[go: up one dir, main page]

login
A036828
A036827/2.
2
0, 1, 17, 125, 637, 2637, 9549, 31501, 97037, 283661, 795661, 2158605, 5697549, 14696461, 37175309, 92471309, 226689037, 548667405, 1313079309, 3111125005, 7305429005, 17016291341, 39346765837, 90378862605, 206342979597, 468486979597, 1058239676429
OFFSET
0,3
COMMENTS
This sequence is related to A036826 by a(n) = n*A036826(n)-sum(A036826(i), i=0..n-1). - Bruno Berselli, Mar 06 2012
FORMULA
G.f.: -x*(4*x^2+8*x+1)/((x-1)*(2*x-1)^4). [From Maksym Voznyy (voznyy(AT)mail.ru), Aug 13 2009]
a(n) = 2^n*(n^3-3*n^2+9*n-13)+13. - Bruno Berselli, Mar 06 2012
MATHEMATICA
LinearRecurrence[{9, -32, 56, -48, 16}, {0, 1, 17, 125, 637}, 27] (* Bruno Berselli, Mar 06 2012 *)
PROG
(Magma) m:=26; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(-(4*x^2+8*x+1)/((x-1)*(2*x-1)^4))); // Bruno Berselli, Mar 06 2012
(PARI) for(n=0, 26, print1(2^n*(n^3-3*n^2+9*n-13)+13", ")); \\ Bruno Berselli, Mar 06 2012
CROSSREFS
Sequence in context: A297975 A023081 A056122 * A142613 A066453 A298838
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Typo in definition corrected by R. J. Mathar, Sep 16 2009
STATUS
approved