[go: up one dir, main page]

login
A036370
Triangle of coefficients of generating function of ternary rooted trees of height at most n.
19
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1, 1, 1, 1, 2, 4, 7, 12, 20, 31, 47, 70, 99, 137, 184, 239, 300, 369, 432, 498, 551, 594, 614, 624, 601, 570, 514, 453, 378, 312, 238, 181, 128, 89, 56, 37, 20, 12, 6, 3, 1, 1
OFFSET
0,12
FORMULA
T_{i+1}(z) = 1 +z*(T_i(z)^3/6 +T_i(z^2)*T_i(z)/2 +T_i(z^3)/3); T_0(z) = 1.
EXAMPLE
1;
1, 1;
1, 1, 1, 1, 1;
1, 1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1;
...
MAPLE
T:= proc(n) option remember; local f, g;
if n=0 then 1
else f:= z-> add([T(n-1)][i]*z^(i-1), i=1..nops([T(n-1)]));
g:= expand(1 +z*(f(z)^3/6 +f(z^2)*f(z)/2 +f(z^3)/3));
seq(coeff(g, z, i), i=0..degree(g, z))
fi
end:
seq(T(n), n=0..5); # Alois P. Heinz, Sep 26 2011
MATHEMATICA
T[n_] := T[n] = Module[{f, g}, If[n == 0, {1}, f[z_] = Sum[T[n-1][[i]]*z^(i-1), {i, 1, Length[T[n-1]]}]; g = Expand[1+z*(f[z]^3/6+f[z^2]*f[z]/2+f[z^3]/3)]; Table[Coefficient [g, z, i], {i, 0, Exponent[g, z]}]]]; Table[T[n], {n, 0, 5}] // Flatten (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
CROSSREFS
Cf. A036437.
Sequence in context: A319715 A088807 A036371 * A005208 A110007 A327715
KEYWORD
nonn,easy,tabf
AUTHOR
N. J. A. Sloane, Eric Rains (rains(AT)caltech.edu)
STATUS
approved