OFFSET
0,12
LINKS
FORMULA
T_{i+1}(z) = 1 +z*(T_i(z)^3/6 +T_i(z^2)*T_i(z)/2 +T_i(z^3)/3); T_0(z) = 1.
EXAMPLE
1;
1, 1;
1, 1, 1, 1, 1;
1, 1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1;
...
MAPLE
T:= proc(n) option remember; local f, g;
if n=0 then 1
else f:= z-> add([T(n-1)][i]*z^(i-1), i=1..nops([T(n-1)]));
g:= expand(1 +z*(f(z)^3/6 +f(z^2)*f(z)/2 +f(z^3)/3));
seq(coeff(g, z, i), i=0..degree(g, z))
fi
end:
seq(T(n), n=0..5); # Alois P. Heinz, Sep 26 2011
MATHEMATICA
T[n_] := T[n] = Module[{f, g}, If[n == 0, {1}, f[z_] = Sum[T[n-1][[i]]*z^(i-1), {i, 1, Length[T[n-1]]}]; g = Expand[1+z*(f[z]^3/6+f[z^2]*f[z]/2+f[z^3]/3)]; Table[Coefficient [g, z, i], {i, 0, Exponent[g, z]}]]]; Table[T[n], {n, 0, 5}] // Flatten (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,easy,tabf
AUTHOR
N. J. A. Sloane, Eric Rains (rains(AT)caltech.edu)
STATUS
approved