[go: up one dir, main page]

login
A036042
k appears partition(k) times.
32
0, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10
OFFSET
0,3
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, 1972, p. 831, column labeled "n".
LINKS
Robert Price, Table of n, a(n) for n = 0..9295 (0 <= k <=25).
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
Sum_{n>=1} (-1)^(n+1)/a(n) = Sum_{n>=2} (-1)^n/A052002(n) = 0.78686... . - Amiram Eldar, Feb 18 2024
MATHEMATICA
Table[ConstantArray[n, PartitionsP[n]], {n, 0, 9}] // Flatten (* Robert Price, Jun 12 2020 *)
CROSSREFS
Sequence in context: A255121 A095791 A238965 * A162988 A143824 A182009
KEYWORD
nonn
AUTHOR
STATUS
approved