[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n into parts 7k+1 or 7k+6.
3

%I #21 Mar 22 2017 10:33:22

%S 1,1,1,1,1,1,2,2,3,3,3,3,4,5,6,7,8,8,9,10,12,14,16,17,19,20,23,26,30,

%T 33,37,39,43,47,53,59,66,71,77,83,92,101,113,123,134,144,156,169,187,

%U 204,223,240,259,278,303,329,360,389,420,449,485,522,567,613,663,710,763

%N Number of partitions of n into parts 7k+1 or 7k+6.

%C Convolution of A109708 and A109703. - _Vaclav Kotesovec_, Jan 21 2017

%H Vaclav Kotesovec, <a href="/A035430/b035430.txt">Table of n, a(n) for n = 0..10000</a>

%F a(n) ~ exp(2*Pi*sqrt(n/21)) / (4 * 21^(1/4) * sin(Pi/7) * n^(3/4)) * (1 - (3*sqrt(21)/(16*Pi) + 13*Pi/(84*sqrt(21))) / sqrt(n)). - _Vaclav Kotesovec_, Aug 26 2015, extended Jan 24 2017

%F a(n) = (1/n)*Sum_{k=1..n} A284151(k)*a(n-k), a(0) = 1. - _Seiichi Manyama_, Mar 21 2017

%t nmax = 100; CoefficientList[Series[Product[1/((1 - x^(7k+1))*(1 - x^(7k+6))), {k, 0, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Aug 26 2015 *)

%Y Cf. A284151.

%K nonn

%O 0,7

%A _Olivier Gérard_

%E Prepended a(0)=1 from _Vaclav Kotesovec_, Jan 23 2017