[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035430
Number of partitions of n into parts 7k+1 or 7k+6.
3
1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7, 8, 8, 9, 10, 12, 14, 16, 17, 19, 20, 23, 26, 30, 33, 37, 39, 43, 47, 53, 59, 66, 71, 77, 83, 92, 101, 113, 123, 134, 144, 156, 169, 187, 204, 223, 240, 259, 278, 303, 329, 360, 389, 420, 449, 485, 522, 567, 613, 663, 710, 763
OFFSET
0,7
COMMENTS
Convolution of A109708 and A109703. - Vaclav Kotesovec, Jan 21 2017
LINKS
FORMULA
a(n) ~ exp(2*Pi*sqrt(n/21)) / (4 * 21^(1/4) * sin(Pi/7) * n^(3/4)) * (1 - (3*sqrt(21)/(16*Pi) + 13*Pi/(84*sqrt(21))) / sqrt(n)). - Vaclav Kotesovec, Aug 26 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284151(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 21 2017
MATHEMATICA
nmax = 100; CoefficientList[Series[Product[1/((1 - x^(7k+1))*(1 - x^(7k+6))), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 26 2015 *)
CROSSREFS
Cf. A284151.
Sequence in context: A034584 A359357 A352130 * A167227 A048280 A024695
KEYWORD
nonn
EXTENSIONS
Prepended a(0)=1 from Vaclav Kotesovec, Jan 23 2017
STATUS
approved