[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034960
Divide odd numbers into groups with prime(n) elements and add together.
7
4, 21, 75, 189, 495, 897, 1683, 2565, 4071, 6641, 8959, 13209, 17835, 22317, 28623, 37577, 48439, 57401, 71623, 85697, 98623, 118737, 138195, 163493, 196231, 224321, 249775, 281945, 310759, 347249, 420751, 467801, 525943, 571985, 656047
OFFSET
1,1
LINKS
FORMULA
From Hieronymus Fischer, Sep 26 2012: (Start)
a(n) = Sum_{k=A007504(n-1)+1..A007504(n)} (2*k-1).
a(n) = A007504(n)^2 - A007504(n-1)^2.
a(n) = 2*A034957(n) + A000040(n).
a(n) = 2*A034956(n) - A000040(n).
a(n) = A034959(n) + A000040(n). (End)
a(n) = A061802(n)*A000040(n). - Marco Zárate, May 12 2023
EXAMPLE
{1,3} #2 S=4;
{5,7,9} #3 S=21;
{11,13,15,17,19} #5 S=75;
{21,23,25,27,29,31,33} #7 S=189.
MAPLE
S:= n-> sum(ithprime(k), k=1..n): seq(S(n+1)^2-S(n)^2, n=0..40); # Gary Detlefs, Dec 20 2011
PROG
(Python)
from itertools import islice
from sympy import nextprime
def A034960_gen(): # generator of terms
a, p = 0, 2
while True:
yield p*((a<<1)+p)
a, p = a+p, nextprime(p)
A034960_list = list(islice(A034960_gen(), 20)) # Chai Wah Wu, Mar 22 2023
(PARI) a0(n) = vecsum(primes(n))^2 - vecsum(primes(n-1))^2; \\ Michel Marcus, Jun 16 2024
KEYWORD
nonn
AUTHOR
Patrick De Geest, Oct 15 1998
STATUS
approved