[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of eta(16z)^4*eta(4z)^2.
1

%I #13 Feb 22 2021 11:23:33

%S 1,-2,-1,2,-3,10,2,-8,-4,-14,7,4,18,-2,-13,14,1,14,-21,-4,-35,-14,28,

%T -6,7,38,39,-30,20,-36,-14,0,17,4,-49,14,-15,-22,-16,66,-39,-10,21,42,

%U 69,82,-18,-80,-28,-50,28,-70,-35,14,66,-56,41,-32,8,52,-77,42,3,36,60

%N Expansion of eta(16z)^4*eta(4z)^2.

%C Apparently this is the convolution square of A255252. - _R. J. Mathar_, Feb 22 2021

%H Johann Cigler, <a href="https://homepage.univie.ac.at/johann.cigler/preprints/losanitsch3.pdf">Some Pascal-like triangles</a>, 2018.

%H Ono and Skinner, <a href="https://doi.org/10.2307/121015">Fourier coefficients of half-integral weight modular forms modulo l</a>, Ann. Math., 147 (1998), 453-470.

%e q^3-2*q^7-1*q^11+2*q^15-3*q^19+...

%p nmax := 30;

%p eta := product(1-q^i,i=1..nmax) ; # eta=A010815

%p g := subs(q=q^4,eta)^4*eta^2 ;

%p g := taylor(g,q=0,nmax+1) ;

%p seq( coeftayl(g,q=0,i),i=0..nmax) ; # _R. J. Mathar_, Feb 22 2021

%Y Cf. A010815.

%K sign,easy

%O 0,2

%A _N. J. A. Sloane_.

%E More terms from _James A. Sellers_, Feb 09 2000