[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034073
a(0)=2; a(n) is the smallest k > a(n-1) such that the fractional part of k^(1/8) starts with n.
3
2, 3, 5, 9, 15, 26, 43, 70, 111, 170, 379, 393, 409, 424, 440, 457, 474, 492, 511, 530, 549, 570, 590, 612, 634, 657, 681, 706, 731, 757, 784, 811, 840, 869, 899, 931, 963, 996, 1030, 1065, 1101, 1138, 1177, 1216, 1257, 1299, 1342, 1386, 1431, 1478, 1526
OFFSET
0,1
FORMULA
For n > 0, a(n) = ceiling((d + n/10^d)^8) where d = 1 + floor(log_10(n)). - Jon E. Schoenfield, Dec 09 2017
EXAMPLE
a(20) = 549 -> 549^(1/8) = 2.{20}012088...;
a(21) = 570 -> 570^(1/8) = 2.{21}046863... and a(20)=549 < a(21)=570.
From Jon E. Schoenfield, Dec 09 2017: (Start)
n a(n) a(n)^(1/8)
-- ---- ---------------
0 2 1.{0}9050773...
1 3 1.{1}4720269...
2 5 1.{2}2284454...
3 9 1.{3}1607401...
4 15 1.{4}0285055...
5 26 1.{5}0269786...
6 43 1.{6}0023423...
7 70 1.{7}0073737...
8 111 1.{8}0162903...
9 170 1.{9}0022975...
10 379 2.{10}053489...
11 393 2.{11}008071...
12 409 2.{12}063250...
...
99 6389 2.{99}005454...
100 8529 3.{100}00407...
101 8551 3.{101}00247... (End)
PROG
(PARI) a(n) = if(n == 0, return(2)); my(d = 1 + logint(n, 10)); ceil((d + n/10^d)^8); \\ Iain Fox, Dec 09 2017
CROSSREFS
Sequence in context: A228646 A005517 A034063 * A114623 A079971 A355805
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Sep 15 1998
EXTENSIONS
Name edited by Jon E. Schoenfield, Dec 09 2017
STATUS
approved