Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #46 Sep 08 2022 08:44:47
%S 3,5,7,13,17,19,23,29,37,43,59,79,83,89,97,103,127,139,149,163,167,
%T 173,197,199,227,233,239,257,269,293,313,317,337,349,353,367,383,397,
%U 409,419,433,439,457,479,499,503,523,569,577,607,643,659,709,757,769,797,859,863
%N Primes p such that 3*p + 2 is also prime.
%C Also, son primes of order 1. For smallest son primes of order n see A136027 (also definition). For son primes of order 2 see A136082. - _Artur Jasinski_, Dec 12 2007
%H Zak Seidov and Michael De Vlieger, <a href="/A023208/b023208.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from _Zak Seidov_)
%H Rosemary Sullivan and Neil Watling, <a href="http://www.emis.de/journals/INTEGERS/papers/n65/n65.Abstract.html">Independent divisibility pairs on the set of integers from 1 to n</a>, INTEGERS 13 (2013) #A65.
%t n = 1; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, (Prime[k] - 2n)/(2n + 1)]], {k, 1, 1000}]; a (* _Artur Jasinski_, Dec 12 2007 *)
%o (PARI) isA023208(n) = isprime(n) && isprime(3*n+2) \\ _Michael B. Porter_, Jan 30 2010
%o (Magma) [n: n in PrimesUpTo(900) | IsPrime(3*n+2)]; // _Vincenzo Librandi_, Nov 20 2010
%o (Haskell)
%o a023208 n = a023208_list !! (n-1)
%o a023208_list = filter ((== 1) . a010051 . (+ 2) . (* 3)) a000040_list
%o -- _Reinhard Zumkeller_, Aug 15 2011
%Y Cf. A023208, A094524, A136019, A136020, A136026, A136027, A136082, A136083, A136084, A136085, A136086, A136087, A136088, A136089, A136090, A136091.
%K nonn,easy
%O 1,1
%A _David W. Wilson_
%E Edited by _N. J. A. Sloane_, May 16 2008 at the suggestion of _R. J. Mathar_