[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 2; a(n+1) = a(n)-th composite.
5

%I #9 May 13 2018 10:12:43

%S 2,6,12,21,33,49,69,94,125,164,212,270,339,422,520,636,774,933,1121,

%T 1339,1590,1880,2210,2587,3021,3512,4074,4710,5427,6239,7155,8183,

%U 9339,10637,12084,13705,15517,17534,19773,22266,25030,28095,31484,35239,39387,43960

%N a(1) = 2; a(n+1) = a(n)-th composite.

%D C. Kimberling, Fractal sequences and interspersions, Ars Combinatoria, vol. 45 p 157 1997.

%H Chai Wah Wu, <a href="/A022450/b022450.txt">Table of n, a(n) for n = 1..900</a>

%H C. Kimberling, <a href="http://faculty.evansville.edu/ck6/integer/intersp.html">Interspersions</a>

%t g[ n_Integer ] := (k = n + PrimePi[ n ] + 1; While[ k - PrimePi[ k ] - 1, k++ ]; k); NestList[ g, 2, 45 ]

%Y Cf. A006508, A022451, A025010, A025011.

%K nonn

%O 1,1

%A _Clark Kimberling_