OFFSET
0,1
LINKS
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (1, 1).
FORMULA
G.f.: (3 + 6*x)/(1 - x - x^2). - Philippe Deléham, Nov 19 2008
a(n+2) = 3*L(n+3) = L(n) + 4*L(n+1) + 2*L(n+2), where L=A000032. - J. M. Bergot, Oct 21 2012
a(n) = Fibonacci(n+4) - Fibonacci(n-4), where n>0 and Fibonacci(-3..-1) = 2,-1,1. - Bruno Berselli, May 22 2015
a(n) = L(n+4) + L(n-4) - 4*L(n) for n>0. - Bruno Berselli, Dec 29 2016
MATHEMATICA
LinearRecurrence[{1, 1}, {3, 9}, 30] (* Alonso del Arte, Oct 09 2013 *)
Table[3 LucasL[n + 1], {n, 0, 40}] (* Bruno Berselli, May 22 2015 *)
Table[LucasL[n + 4] + LucasL[n - 4] - 4 LucasL[n], {n, 1, 40}] (* Bruno Berselli, Dec 30 2016 *)
PROG
(PARI) Vec((3+6*x)/(1-x-x^2)+O(x^99)) \\ Charles R Greathouse IV, Oct 21 2012
(Magma) [3*Lucas(n+1): n in [0..40]]; // Bruno Berselli, May 22 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Bruno Berselli, May 22 2015
STATUS
approved