[go: up one dir, main page]

login
A022379
Fibonacci sequence beginning 3, 9.
6
3, 9, 12, 21, 33, 54, 87, 141, 228, 369, 597, 966, 1563, 2529, 4092, 6621, 10713, 17334, 28047, 45381, 73428, 118809, 192237, 311046, 503283, 814329, 1317612, 2131941, 3449553, 5581494, 9031047, 14612541, 23643588, 38256129, 61899717, 100155846, 162055563, 262211409
OFFSET
0,1
FORMULA
G.f.: (3 + 6*x)/(1 - x - x^2). - Philippe Deléham, Nov 19 2008
a(n+2) = 3*L(n+3) = L(n) + 4*L(n+1) + 2*L(n+2), where L=A000032. - J. M. Bergot, Oct 21 2012
a(n) = Fibonacci(n+4) - Fibonacci(n-4), where n>0 and Fibonacci(-3..-1) = 2,-1,1. - Bruno Berselli, May 22 2015
a(n) = L(n+4) + L(n-4) - 4*L(n) for n>0. - Bruno Berselli, Dec 29 2016
MATHEMATICA
LinearRecurrence[{1, 1}, {3, 9}, 30] (* Alonso del Arte, Oct 09 2013 *)
Table[3 LucasL[n + 1], {n, 0, 40}] (* Bruno Berselli, May 22 2015 *)
Table[LucasL[n + 4] + LucasL[n - 4] - 4 LucasL[n], {n, 1, 40}] (* Bruno Berselli, Dec 30 2016 *)
PROG
(PARI) Vec((3+6*x)/(1-x-x^2)+O(x^99)) \\ Charles R Greathouse IV, Oct 21 2012
(Magma) [3*Lucas(n+1): n in [0..40]]; // Bruno Berselli, May 22 2015
CROSSREFS
Cf. similar sequences listed in A258160.
Sequence in context: A270672 A211217 A307201 * A344720 A303192 A261957
KEYWORD
nonn,easy
EXTENSIONS
More terms from Bruno Berselli, May 22 2015
STATUS
approved