[go: up one dir, main page]

login
A022318
a(n) = a(n-1) + a(n-2) + 1, with a(0) = 1 and a(1) = 4.
4
1, 4, 6, 11, 18, 30, 49, 80, 130, 211, 342, 554, 897, 1452, 2350, 3803, 6154, 9958, 16113, 26072, 42186, 68259, 110446, 178706, 289153, 467860, 757014, 1224875, 1981890, 3206766, 5188657, 8395424
OFFSET
0,2
FORMULA
From Ron Knott, Aug 25 2006: (Start)
a(n) = 2*A000045(n+2) + A000045(n) - 1.
G.f.: (1+2*x-2*x^2)/((1-x)*(1-x-x^2)).
a(0)=1, a(1)=4, a(2)=6, a(n) = 2*a(n-1) - a(n-3). (End)
a(n) - a(n-1) = A013655(n-1). - R. J. Mathar, May 06 2014
MATHEMATICA
LinearRecurrence[{2, 0, -1}, {1, 4, 6}, 50] (* G. C. Greubel, Aug 25 2017 *)
PROG
(PARI) x='x+O('x^50); Vec((1+2*x-2*x^2)/((1-x)*(1-x-x^2))) \\ G. C. Greubel, Aug 25 2017
CROSSREFS
Cf. A122195.
Sequence in context: A360361 A197985 A058579 * A378242 A291916 A047811
KEYWORD
nonn,easy
STATUS
approved