[go: up one dir, main page]

login
A022136
Fibonacci sequence beginning 5, 11.
6
5, 11, 16, 27, 43, 70, 113, 183, 296, 479, 775, 1254, 2029, 3283, 5312, 8595, 13907, 22502, 36409, 58911, 95320, 154231, 249551, 403782, 653333, 1057115, 1710448, 2767563, 4478011, 7245574, 11723585, 18969159, 30692744, 49661903, 80354647, 130016550
OFFSET
0,1
COMMENTS
From Wajdi Maaloul, Jun 19 2022: (Start)
For n > 0, 2*a(n) is the number of ways to tile this strip of length n+1 (beginning with two vertical strips of length 3) using squares and dominoes.
._ _
|_|_|
|_|_|_______________ _
|_|_|_|_|_|_|_|_|_|_|...|_|
(End)
From Greg Dresden, Jun 26 2022: (Start)
For n > 0, 5*a(n) is the number of ways to tile this strip of length n (beginning with a long vertical strip of length 9) using squares and dominoes.
._
|_|
|_|
|_|
|_|_________________ _
|_|_|_|_|_|_|_|_|_|_|...|_|
|_|
|_|
|_|
|_|
(End)
FORMULA
G.f.: (5+6*x)/(1-x-x^2). - Philippe Deléham, Nov 20 2008
a(n) = 2*Lucas(n-1) + 7*Fibonacci(n+1). - Lechoslaw Ratajczak, May 01 2017
a(n) = Fibonacci(n+6) - Fibonacci(n+1) - Lucas(n). - Greg Dresden and Aamen Muharram, Jul 22 2022
MATHEMATICA
Transpose[NestList[{Last[#], Total[#]}&, {5, 11}, 40]][[1]] (* Harvey P. Dale, Apr 04 2011 *)
LinearRecurrence[{1, 1}, {5, 11}, 40] (* Vincenzo Librandi, May 03 2017 *)
CROSSREFS
Sequence in context: A314181 A314182 A035108 * A042385 A041046 A041117
KEYWORD
nonn,easy
STATUS
approved