[go: up one dir, main page]

login
A022113
Fibonacci sequence beginning 2, 7.
14
2, 7, 9, 16, 25, 41, 66, 107, 173, 280, 453, 733, 1186, 1919, 3105, 5024, 8129, 13153, 21282, 34435, 55717, 90152, 145869, 236021, 381890, 617911, 999801, 1617712, 2617513, 4235225, 6852738, 11087963, 17940701, 29028664, 46969365, 75998029, 122967394
OFFSET
0,1
REFERENCES
H. S. M. Coxeter, Introduction to Geometry, Second Edition, Wiley Classics Library Edition Published 1989, p. 172.
FORMULA
From Colin Barker, Oct 18 2013: (Start)
G.f.: -(5*x + 2)/(x^2 + x - 1).
a(n) = a(n-1) + a(n-2). (End)
a(n) = ((5+6*sqrt(5))/5)*((1+sqrt(5))/2)^n + ((5-6*sqrt(5))/5)*((1-sqrt(5))/2)^n starting at n=0. - Bogart B. Strauss, Oct 27 2013
a(n) = h*Fibonacci(n+k) + Fibonacci(n+k-h) with h=5, k=1. - Bruno Berselli, Feb 20 2017
a(n) = 8*F(n) + F(n-3) for F = A000045. - J. M. Bergot, Jul 14 2017
a(n) = Fibonacci(n+4) + Lucas(n-1). - Greg Dresden and Henry Sauer, Mar 04 2022
E.g.f.: 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) + 6*sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, Jul 18 2022
MATHEMATICA
RecurrenceTable[{a[0] == 2, a[1] == 7, a[n] == a[n - 1] + a[n - 2]}, a, {n, 0, 40}] (* Bruno Berselli, Mar 12 2015 *)
LinearRecurrence[{1, 1}, {2, 7}, 37] (* or *)
CoefficientList[Series[-(5 x + 2)/(x^2 + x - 1), {x, 0, 36}], x] (* Michael De Vlieger, Jul 14 2017 *)
PROG
(Magma) a0:=2; a1:=7; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; // Bruno Berselli, Feb 12 2013
(PARI) a(n)=8*fibonacci(n)+fibonacci(n-3) \\ Charles R Greathouse IV, Jul 14 2017
(PARI) a(n)=([0, 1; 1, 1]^n*[2; 7])[1, 1] \\ Charles R Greathouse IV, Jul 14 2017
CROSSREFS
Sequence in context: A165995 A287575 A267212 * A041643 A041395 A042345
KEYWORD
nonn,easy
STATUS
approved