[go: up one dir, main page]

login
A022091
Fibonacci sequence beginning 0, 8.
6
0, 8, 8, 16, 24, 40, 64, 104, 168, 272, 440, 712, 1152, 1864, 3016, 4880, 7896, 12776, 20672, 33448, 54120, 87568, 141688, 229256, 370944, 600200, 971144, 1571344, 2542488, 4113832, 6656320, 10770152, 17426472, 28196624, 45623096, 73819720, 119442816
OFFSET
0,2
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 15.
FORMULA
a(n) = round( (16phi-8)/5 phi^n) (works for n>4). - Thomas Baruchel, Sep 08 2004
a(n) = 8*F(n) = F(n+4) + F(n) + F(n-4) for n>3, where F=A000045.
G.f.: 8*x/(1-x-x^2). - Philippe Deléham, Nov 20 2008
MATHEMATICA
a={}; b=0; c=8; AppendTo[a, b]; AppendTo[a, c]; Do[b=b+c; AppendTo[a, b]; c=b+c; AppendTo[a, c], {n, 4!}]; a (* Vladimir Joseph Stephan Orlovsky, Sep 17 2008 *)
LinearRecurrence[{1, 1}, {0, 8}, 40] (* Harvey P. Dale, Jan 19 2018 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved