[go: up one dir, main page]

login
A022088
Fibonacci sequence beginning 0, 5.
16
0, 5, 5, 10, 15, 25, 40, 65, 105, 170, 275, 445, 720, 1165, 1885, 3050, 4935, 7985, 12920, 20905, 33825, 54730, 88555, 143285, 231840, 375125, 606965, 982090, 1589055, 2571145, 4160200, 6731345, 10891545, 17622890, 28514435, 46137325, 74651760, 120789085
OFFSET
0,2
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, pp. 15, 34, 52.
LINKS
Tanya Khovanova, Recursive Sequences
Kristina Lund, Steven Schlicker and Patrick Sigmon, Fibonacci sequences and the space of compact sets, Involve, 1:2 (2008), pp. 159-165.
FORMULA
a(n) = round( (2*phi-1)*phi^n ) for n>3. - Thomas Baruchel, Sep 08 2004
a(n) = 5*Fibonacci(n).
a(n) = A119457(n+3,n-1) for n>1. - Reinhard Zumkeller, May 20 2006
G.f.: 5*x/(1-x-x^2). - Philippe Deléham, Nov 20 2008
a(n+2) = A014217(n+4) - A014217(n). - Paul Curtz, Dec 22 2008
a(n) = sqrt(5*(A000032(n)^2 - 4*(-1)^n)). - Alexander Samokrutov, Sep 02 2015
From Tom Copeland, Jan 25 2016: (Start)
The o.g.f. for the shifted series b(0)=0 and b(n) = a(n+1) is G(x) = 5*x*(1+x)/(1-x*(1+x)) = 5 L(-Cinv(-x)), where L(x) = x/(1-x) with inverse Linv(x) = x/(1+x) and Cinv(x) = x*(1-x), the inverse of the o.g.f. for the shifted Catalan numbers of A000108, C(x) = (1-sqrt(1-4*x))/2. Then Ginv(x) = -C(-Linv(x/5)) = (-1 + sqrt(1+4*x/(5+x)))/2.
a(n+1) = 5*Sum_{k=0..n} binomial(n-k,k) = 5 * A000045(n+1), from A267633, with the convention for zeros of the binomial assumed there.
(End)
For n > 0, 1/a(n) = Sum_{k>=1} F(n*k)/(L(n+1)^(k+1)), where F(n) = A000045(n) and L(n) = A000032(n). - Diego Rattaggi, Oct 26 2022
MATHEMATICA
LinearRecurrence[{1, 1}, {0, 5}, 40] (* Harvey P. Dale, Jan 13 2012 *)
5*Fibonacci[Range[0, 50]] (* G. C. Greubel, Feb 10 2023 *)
PROG
(Magma) [5*Fibonacci(n): n in [1..40]]; // Vincenzo Librandi, Sep 03 2015
(PARI) a(n) = 5*fibonacci(n); \\ Michel Marcus, Sep 03 2015
(SageMath) [5*fibonacci(n) for n in range(51)] # G. C. Greubel, Feb 10 2023
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved