[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A021024
Expansion of 1/((1-x)(1-2x)(1-3x)(1-5x)).
1
1, 11, 80, 490, 2751, 14721, 76630, 392480, 1990901, 10041031, 50466780, 253122870, 1267989451, 6347088941, 31756902530, 158848951660, 794438206401, 3972771638451, 19865600535880, 99333230758850, 496681840129751, 2483456263849561, 12417422517238830
OFFSET
0,2
FORMULA
a(n) = stirling2(n+4,4) + stirling2(n+4,5). - Zerinvary Lajos, Oct 04 2007
a(0)=1, a(1)=11, a(2)=80, a(3)=490; for n>3, a(n) = 11*a(n-1) -41*a(n-2) +61*a(n-3) -30*a(n-4). - Vincenzo Librandi, Jul 05 2013
a(n) = 8*a(n-1) -15*a(n-2) +2^n -1. - Vincenzo Librandi, Jul 05 2013
a(n) = (5^(n+3) - 6*3^(n+3) + 8*2^(n+3) - 3)/24. [Yahia Kahloune, Jul 07 2013]
MAPLE
with(combinat): seq(stirling2(n+4, 4) +stirling2(n+4, 5), n=0..23); # Zerinvary Lajos, Oct 04 2007
MATHEMATICA
CoefficientList[Series[1 / ((1 - x) (1 - 2 x) (1 - 3 x) (1 -5 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 05 2013 *)
LinearRecurrence[{11, -41, 61, -30}, {1, 11, 80, 490}, 30] (* Harvey P. Dale, Oct 11 2024 *)
PROG
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1-2*x)*(1-3*x)*(1-5*x)))); /* or */ I:=[1, 11, 80, 490]; [n le 4 select I[n] else 11*Self(n-1)-41*Self(n-2)+61*Self(n-3)-30*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Jul 05 2013
CROSSREFS
Sequence in context: A159663 A227244 A026897 * A127021 A326243 A091098
KEYWORD
nonn,easy
AUTHOR
STATUS
approved