[go: up one dir, main page]

login
A020958
a(n) = Sum_{k >= 1} floor(3*tau^(n-k)).
2
5, 9, 16, 28, 48, 81, 134, 221, 361, 589, 957, 1554, 2519, 4082, 6610, 10702, 17322, 28035, 45368, 73415, 118795, 192223, 311031, 503268, 814313, 1317596, 2131924, 3449536, 5581476, 9031029, 14612522, 23643569, 38256109, 61899697, 100155825, 162055542, 262211387
OFFSET
1,1
COMMENTS
Since 3*tau^(-3) < 1 the number of nonzero terms in the sum is finite. - Giovanni Resta, Jul 08 2019
LINKS
C. Kimberling, Problem 10520, Amer. Math. Mon. 103 (1996) p. 347.
FORMULA
a(n) = Sum_{k=-2..(n-1)} floor(3*tau^k). - Giovanni Resta, Jul 08 2019
MATHEMATICA
a[n_] := Sum[Floor[3 GoldenRatio^k], {k, -2, n-1}]; Array[a, 37] (* Giovanni Resta, Jul 08 2019 *)
CROSSREFS
Cf. A001622 (tau), A020957.
Sequence in context: A356675 A072174 A188555 * A020750 A020713 A090990
KEYWORD
nonn
EXTENSIONS
Name edited by Michel Marcus, Jul 06 2019
a(27)-a(37) from Giovanni Resta, Jul 08 2019
STATUS
approved