[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029887
A sum over scaled A000531 related to Catalan numbers C(n).
6
1, 11, 82, 515, 2934, 15694, 80324, 397923, 1922510, 9105690, 42438076, 195165646, 887516252, 3997537980, 17857602568, 79200753059, 349051186494, 1529735010658, 6670733733260, 28959032959962, 125209652884756, 539384745200516, 2315840230811832, 9912689725127950
OFFSET
0,2
COMMENTS
Related to planar maps? - see A000184. - N. J. A. Sloane, Mar 11 2007
LINKS
FORMULA
a(n) = 4^n * Sum_{k=0..n} A000531(k+1)/4^k.
a(n) = (1/3)*(2*n+1)*(2*n+3)*(2*n+5)*Catalan(n) - (n+2)*2^(2*n+1).
a(n) = 4*a(n-1) + A000531(n+1).
G.f. c(x)/(1-4*x)^(5/2) = (2-c(x))/(1-4*x)^3, where c(x) = g.f. for Catalan numbers; also convolution of Catalan numbers with A002802.
G.f.: (4*x-1+sqrt(1-4*x))/(2*x*(1-4*x)^3). - Vincenzo Librandi, Mar 14 2014
From G. C. Greubel, Jul 18 2024:
a(n) = (1/24)*(n+2)*((n+3)*(n+4)*Catalan(n+3) - 3*4^(n+2)).
a(n) = (1/2)*A000184(n+2). (End)
MATHEMATICA
a[n_] := (2*n+1)*(2*n+3)*(2*n+5)*CatalanNumber[n]/3 - (n+2)*2^(2*n+1); Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Mar 12 2014 *)
CoefficientList[Series[(4 x - 1 + Sqrt[1 - 4 x])/(2 x (1 - 4 x)^3), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 14 2014 *)
PROG
(Magma) [(2*n+1)*(2*n+3)*(2*n+5)*Catalan(n)/3 - (n+2)*2^(2*n+1): n in [0..30]]; // Vincenzo Librandi, Mar 14 2014
(SageMath)
[(n+2)*((n+3)*(n+4)*catalan_number(n+3) - 3*4^(n+2))//24 for n in range(31)] # G. C. Greubel, Jul 18 2024
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Vincenzo Librandi, Mar 14 2014
STATUS
approved