[go: up one dir, main page]

login
A029086
Expansion of 1/((1-x)*(1-x^5)*(1-x^6)*(1-x^8)).
1
1, 1, 1, 1, 1, 2, 3, 3, 4, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 20, 22, 24, 27, 29, 32, 34, 37, 40, 44, 47, 51, 54, 58, 62, 67, 71, 76, 80, 86, 91, 97, 102, 108, 114, 121, 127, 135, 141, 149, 156, 164, 172, 181
OFFSET
0,6
COMMENTS
Number of partitions of n into parts 1, 5, 6 and 8. - Ilya Gutkovskiy, May 20 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 1, 0, -1, 1, -1, 0, -1, 1, -1, 0, 1, 0, 0, 0, 1, -1).
FORMULA
G.f.: 1/((1 - x)*(1 - x^5)*(1 - x^6)*(1 - x^8)).
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^5)(1-x^6)(1-x^8)), {x, 0, 100}], x] (* or *) LinearRecurrence[{1, 0, 0, 0, 1, 0, -1, 1, -1, 0, -1, 1, -1, 0, 1, 0, 0, 0, 1, -1}, {1, 1, 1, 1, 1, 2, 3, 3, 4, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16}, 100] (* Harvey P. Dale, Dec 08 2016 *)
CROSSREFS
Sequence in context: A079420 A076895 A282029 * A070046 A130120 A204892
KEYWORD
nonn,easy
AUTHOR
STATUS
approved