[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026922
Number of partitions of n into an odd number of parts, the greatest being 2; also, a(n+3) = number of partitions of n+1 into an even number of parts, each <=2.
5
0, 1, 0, 1, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 7, 6, 7, 7, 8, 7, 8, 8, 9, 8, 9, 9, 10, 9, 10, 10, 11, 10, 11, 11, 12, 11, 12, 12, 13, 12, 13, 13, 14, 13, 14, 14, 15, 14, 15, 15, 16, 15, 16, 16, 17, 16, 17, 17, 18, 17, 18, 18, 19, 18, 19, 19, 20, 19, 20, 20, 21
OFFSET
1,6
COMMENTS
a(n) is also the number of partitions of n into two parts, the larger being odd (the conjugate of the defining partition). Example: a(10) = 3 because we have 55, 73 and 91. - Emeric Deutsch, Nov 12 2008
FORMULA
a(2*n + 1) = a(2*n - 2) = A004526(n).
a(n) = floor((n+2)/4) - [n == 3 mod 4] = floor((1/8)*{2*n - 1 + 3*(-1)^n + 2*(-1)^[(n-1)/2]}). - Ralf Stephan, Jun 09 2005
a(n) = A008624(n-2). - R. J. Mathar, Oct 23 2008
From Emeric Deutsch, Nov 12 2008: (Start)
G.f. = sum(sum(x^(2*i-1+j), j=1..2*i-1), i=1..infinity).
G.f. = x^2*(1-x+x^2)/[(1+x)*(1-x)^2*(1+x^2)]. (End)
From Michael Somos, Oct 14 2008: (Start)
Euler transform of length 6 sequence [ 0, 1, 1, 1, 0, -1].
a(n) = a(n-1) + a(n-4) - a(n-5). a(1 - n) = -a(n).
G.f.: x^2 * (1 - x + x^2) / (1 - x - x^4 + x^5). (End)
EXAMPLE
a(10)=3 because we have 22222, 2221111 and 211111111. - Emeric Deutsch, Nov 12 2008
MAPLE
G:=x^2*(x^2-x+1)/((x+1)*(1-x)^2*(x^2+1)): Gser:= series(G, x=0, 105): seq(coeff(Gser, x, n), n=1..82); # Emeric Deutsch, Nov 12 2008
a := proc(n): if (n mod 4 = 3) then floor((n+2)/4) - 1 else floor((n+2)/4) fi: end: seq(a(n), n=1..82); # Johannes W. Meijer, Oct 10 2013
MATHEMATICA
CoefficientList[Series[x (1 - x + x^2) / (1 - x - x^4 + x^5), {x, 0, 100}], x] (* Vincenzo Librandi, Aug 15 2013 *)
PROG
(PARI) {a(n) = n \ 2 - ((n + 1) \ 4)} /* Michael Somos, Oct 14 2008 */
CROSSREFS
Column 2 of A026920.
Sequence in context: A033922 A008624 A059169 * A178696 A161090 A349219
KEYWORD
nonn,easy
EXTENSIONS
More terms from Emeric Deutsch, Nov 12 2008
STATUS
approved