Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Nov 02 2019 19:59:54
%S 1,7,40,217,1158,6150,32656,173719,926664,4958556,26619438,143365880,
%T 774562478,4197344582,22810572062,124300860689,679081142350,
%U 3718894341450,20412141531664,112276061739814,618806031336236,3416954495002676
%N a(n) = T(2n,n-1), T given by A026780.
%H G. C. Greubel, <a href="/A026782/b026782.txt">Table of n, a(n) for n = 1..500</a>
%p T:= proc(n,k) option remember;
%p if n<0 then 0;
%p elif k=0 or k =n then 1;
%p elif k <= n/2 then
%p procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
%p else
%p procname(n-1,k-1)+procname(n-1,k) ;
%p fi ;
%p end proc:
%p seq(T(2*n,n-1), n=1..30); # _G. C. Greubel_, Nov 02 2019
%t T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[k<=n/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]];
%t Table[T[2*n, n-1], {n, 30}] (* _G. C. Greubel_, Nov 02 2019 *)
%o (Sage)
%o @CachedFunction
%o def T(n, k):
%o if (n<0): return 0
%o elif (k==0 or k==n): return 1
%o elif (k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
%o else: return T(n-1,k-1) + T(n-1,k)
%o [T(2*n, n-1) for n in (1..30)] # _G. C. Greubel_, Nov 02 2019
%Y Cf. A026780, A026781, A026783, A026784, A026785, A026786, A026787, A026788, A026789, A026790.
%K nonn
%O 1,2
%A _Clark Kimberling_