[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025434
Number of partitions of n into 10 nonzero squares.
6
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 4, 1, 2, 4, 1, 2, 5, 2, 4, 4, 2, 5, 4, 2, 5, 6, 4, 5, 6, 4, 5, 6, 5, 7, 9, 5, 7, 10, 5, 7, 11, 6, 11, 10, 6, 12, 10, 7, 13, 14, 10, 12, 14, 11, 12, 14, 12, 16, 19, 12, 16, 19, 12, 16, 22, 15, 21, 21, 15
OFFSET
0,26
FORMULA
a(n) = [x^n y^10] Product_{k>=1} 1/(1 - y*x^(k^2)). - Ilya Gutkovskiy, Apr 19 2019
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} A010052(i) * A010052(j) * A010052(k) * A010052(l) * A010052(m) * A010052(o) * A010052(p) * A010052(q) *A010052(r) * A010052(n-i-j-k-l-m-o-p-q-r). - Wesley Ivan Hurt, Apr 19 2019
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
`if`(i<1 or t<1, 0, b(n, i-1, t)+
`if`(i^2>n, 0, b(n-i^2, i, t-1))))
end:
a:= n-> b(n, isqrt(n), 10):
seq(a(n), n=0..120); # Alois P. Heinz, May 30 2014
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] + If[i^2 > n, 0, b[n - i^2, i, t - 1]]]];
a[n_] := b[n, Sqrt[n] // Floor, 10];
a /@ Range[0, 120] (* Jean-François Alcover, Nov 07 2020, after Alois P. Heinz *)
CROSSREFS
Column k=10 of A243148.
Cf. A010052.
Sequence in context: A276417 A025432 A025433 * A111178 A279187 A254434
KEYWORD
nonn
STATUS
approved