[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024938
Total number of parts in all partitions of n into distinct prime parts.
8
0, 1, 1, 0, 3, 0, 3, 2, 2, 5, 1, 5, 3, 5, 5, 7, 5, 10, 6, 10, 12, 10, 15, 12, 16, 17, 17, 19, 22, 17, 27, 21, 30, 30, 31, 35, 36, 40, 45, 45, 49, 53, 50, 62, 60, 69, 69, 73, 78, 85, 88, 98, 100, 105, 116, 116, 134, 135, 141, 149, 154, 168, 176, 188, 195, 206, 211, 232, 242, 255, 267, 276
OFFSET
1,5
LINKS
FORMULA
G.f.: sum(x^p(j)/(1+x^p(j)),j>=1)*product(1+x^p(j), j>=1), where p(j) is the j-th prime. - Vladeta Jovovic, Jul 17 2003
EXAMPLE
a(16) = 7 because the partitions of 16 into distinct prime parts are [13,3], [11,5] and [11,3,2].
MAPLE
g:=sum(x^ithprime(j)/(1+x^ithprime(j)), j=1..30)*product(1+x^ithprime(j), j=1..30): gser:=series(g, x=0, 80): seq(coeff(gser, x, n), n=1..75); # Emeric Deutsch, Apr 01 2006
# second Maple program:
with(numtheory):
b:= proc(n, i) option remember; local g;
if n=0 then [1, 0]
elif i<1 then [0, 0]
else g:= `if`(ithprime(i)>n, [0$2], b(n-ithprime(i), i-1));
b(n, i-1) +g +[0, g[1]]
fi
end:
a:= n-> b(n, pi(n))[2]:
seq(a(n), n=1..80); # Alois P. Heinz, Oct 30 2012
MATHEMATICA
Rest@ CoefficientList[ Series[ Sum[x^Prime@j/(1 + x^Prime@j), {j, 20}]* Product[1 + x^Prime@j, {j, 20}], {x, 0, 70}], x] (* Robert G. Wilson v *)
b[n_, i_] := b[n, i] = Module[{g}, If[n==0, {1, 0}, If[i < 1, {0, 0}, g = If[ Prime[i] > n, {0, 0}, b[n - Prime[i], i-1]]; b[n, i-1] + g + {0, g[[1]]}]]]; a[n_] := b[n, PrimePi[n]][[2]]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Dec 27 2015, after Alois P. Heinz *)
PROG
(PARI)
sumparts(n, pred)={sum(k=1, n, 1 - 1/(1+pred(k)*x^k) + O(x*x^n))*prod(k=1, n, 1+pred(k)*x^k + O(x*x^n))}
{my(n=60); Vec(sumparts(n, isprime), -n)} \\ Andrew Howroyd, Dec 28 2017
CROSSREFS
Cf. A084993.
Sequence in context: A229964 A309722 A070298 * A332715 A219107 A338498
KEYWORD
easy,nonn
EXTENSIONS
More terms from Vladeta Jovovic, Jul 17 2003
STATUS
approved