[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024022
a(n) = 2^n - n^12.
2
1, 1, -4092, -531433, -16777200, -244140593, -2176782272, -13841287073, -68719476480, -282429535969, -999999998976, -3138428374673, -8916100444160, -23298085114289, -56693912358912, -129746337857857, -281474976645120
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (15, -104, 442, -1287, 2717, -4290, 5148, -4719, 3289, -1716, 650, -169, 27, -2).
FORMULA
From Chai Wah Wu, Jan 26 2020: (Start)
a(n) = 15*a(n-1) - 104*a(n-2) + 442*a(n-3) - 1287*a(n-4) + 2717*a(n-5) - 4290*a(n-6) + 5148*a(n-7) - 4719*a(n-8) + 3289*a(n-9) - 1716*a(n-10) + 650*a(n-11) - 169*a(n-12) + 27*a(n-13) - 2*a(n-14) for n > 13.
G.f.: (x^13 + 8178*x^12 + 952381*x^11 + 19897385*x^10 + 122448548*x^9 + 258707385*x^8 + 162510570*x^7 - 29873622*x^6 - 45944391*x^5 - 9230428*x^4 - 470391*x^3 - 4003*x^2 - 14*x + 1)/((x - 1)^13*(2*x - 1)). (End)
MATHEMATICA
CoefficientList[Series[(x^13+8178x^12+952381x^11+19897385x^10+122448548x^9+258707385x^8+162510570x^7-29873622x^6-45944391x^5-9230428x^4-470391x^3-4003x^2-14x+1)/((x-1)^13(2x-1)), {x, 0, 30}], x] (* or *) LinearRecurrence[{15, -104, 442, -1287, 2717, -4290, 5148, -4719, 3289, -1716, 650, -169, 27, -2}, {1, 1, -4092, -531433, -16777200, -244140593, -2176782272, -13841287073, -68719476480, -282429535969, -999999998976, -3138428374673, -8916100444160, -23298085114289}, 30] (* Harvey P. Dale, Dec 11 2022 *)
PROG
(Magma) [2^n-n^12: n in [0..30] ]; // Vincenzo Librandi, Apr 30 2011
CROSSREFS
Sequence in context: A256028 A063889 A257824 * A145591 A103289 A038463
KEYWORD
sign
STATUS
approved