OFFSET
1,2
COMMENTS
If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
Note that the sequence is not monotonically increasing, with a(4488) > a(4489) being the first of infinitely many examples. - Charles R Greathouse IV, Dec 28 2021
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
T. H. Grönwall, Some asymptotic expressions in the Theory of Numbers, Trans. Amer. Math. Soc., Vol. 14, No. 1 (1913), pp. 113-122.
FORMULA
G.f.: Sum_{k>=1} k^9*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^8)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 06 2017
n^9 + 1 <= a(n) < zeta(9)*n^9. In particular, Grönwall proves lim sup a(n)/n^9 = zeta(9) = A013667. - Charles R Greathouse IV, Dec 27 2021
Sum_{n>=1} a(n)/exp(2*Pi*n) = 1/264 = Bernoulli(10)/20. - Vaclav Kotesovec, May 07 2023
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(9*e+9)-1)/(p^9-1).
Dirichlet g.f.: zeta(s)*zeta(s-9).
Sum_{k=1..n} a(k) = zeta(10) * n^10 / 10 + O(n^11). (End)
MATHEMATICA
Table[DivisorSigma[9, n], {n, 50}] (* Vladimir Joseph Stephan Orlovsky, Mar 11 2009 *)
PROG
(PARI) a(n)=if(n<1, 0, sigma(n, 9))
(Sage) [sigma(n, 9)for n in range(1, 21)] # Zerinvary Lajos, Jun 04 2009
(Magma) [DivisorSigma(9, n): n in [1..20]]; // Bruno Berselli, Apr 10 2013
CROSSREFS
KEYWORD
nonn,mult,easy
AUTHOR
STATUS
approved