[go: up one dir, main page]

login
A010904
Pisot sequence E(4,14): a(n) = floor(a(n-1)^2/a(n-2)+1/2) for n>1, a(0)=4, a(1)=14.
4
4, 14, 49, 172, 604, 2121, 7448, 26154, 91841, 322504, 1132488, 3976785, 13964668, 49037590, 172197809, 604680724, 2123364868, 7456295833, 26183134320, 91943310482, 322863269121, 1133749589840, 3981215131600, 13980224615841, 49092217790004, 172389637059934
OFFSET
0,1
REFERENCES
Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, Preprint, 2016.
LINKS
D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
S. B. Ekhad, N. J. A. Sloane, D. Zeilberger, Automated proofs (or disproofs) of linear recurrences satisfied by Pisot Sequences, arXiv:1609.05570 [math.NT] (2016)
FORMULA
Theorem: a(0)=4, a(1)=14, a(2)=49; for n>2, a(n) = 4*a(n-1)-2*a(n-2)+a(n-3). Proved using the PtoRv program of Ekhad-Sloane-Zeilberger. (Conjectured by Harvey P. Dale, May 02 2012.) - N. J. A. Sloane, Sep 09 2016
MATHEMATICA
RecurrenceTable[{a[0] == 4, a[1] == 14, a[n] == Floor[a[n-1]^2/a[n-2] + 1/2]}, a , {n, 30}] (* Harvey P. Dale, May 02 2012 *)
PROG
(Magma) I:=[4, 14]; [n le 2 select I[n] else Floor(Self(n-1)^2/Self(n-2)+1/2): n in [1..25]]; // Bruno Berselli, Sep 03 2013
(PARI) pisotE(nmax, a1, a2) = {
a=vector(nmax); a[1]=a1; a[2]=a2;
for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));
a
}
pisotE(50, 4, 14) \\ Colin Barker, Jul 27 2016
CROSSREFS
Sequence in context: A278692 A071733 A291384 * A277084 A071737 A071741
KEYWORD
nonn
AUTHOR
STATUS
approved