[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A019610
Decimal expansion of Pi*e/2.
6
4, 2, 6, 9, 8, 6, 7, 1, 1, 1, 3, 3, 6, 7, 8, 3, 5, 3, 2, 7, 3, 1, 7, 7, 5, 4, 3, 4, 7, 7, 3, 2, 8, 7, 2, 4, 7, 5, 1, 7, 4, 4, 4, 2, 6, 7, 8, 8, 2, 5, 5, 7, 4, 8, 0, 9, 3, 9, 8, 0, 0, 5, 6, 5, 0, 8, 9, 6, 1, 4, 3, 0, 5, 5, 7, 8, 6, 6, 5, 4, 0, 3, 7, 8, 6, 2, 8, 1, 9, 3, 4, 8, 5, 5, 2, 3, 6, 9, 7
OFFSET
1,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 136.
LINKS
Z. A. Melzak, Infinite products for πe and π/e, Amer. Math. Monthly 68 (1961) 39-41.
FORMULA
Melzak's formula: lim_{n->infinity} Product_{k=1..2n+1} (1+2/k)^(k*(-1)^(k+1)) = Pi*e/2. - Jean-François Alcover, Apr 25 2014
EXAMPLE
4.26986711133678353273177543477328724751744426788255748...
MAPLE
Digits:=100: evalf(Pi*exp(1)/2); # Wesley Ivan Hurt, Aug 09 2014
MATHEMATICA
RealDigits[(Pi*E)/2, 10, 120][[1]] (* Harvey P. Dale, Apr 16 2014 *)
PROG
(PARI) { default(realprecision, 100); x=(1/2)*Pi*exp(1); for(n=1, 100, d=floor(x); x=(x-d)*10; print1(d, ", ")) } \\ Altug Alkan, Nov 13 2015
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)*Exp(1)/2; // G. C. Greubel, Aug 24 2018
CROSSREFS
KEYWORD
nonn,cons
STATUS
approved