OFFSET
0,2
REFERENCES
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
Winston C. Yang (paper in preparation).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
N. J. A. Sloane, Classic Sequences
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
Index entries for linear recurrences with constant coefficients, signature (6, -10, -10, 50, -34, -66, 110, 0, -110, 66, 34, -50, 10, 10, -6, 1).
FORMULA
l(c, r) = 1/2 C(c+r-3, r) + 1/2 d(c, r), where d(c, r) is C((c + r - 3)/2, r/2) if c is odd and r is even, 0 if c is even and r is odd, C((c + r - 4)/2, r/2) if c is even and r is even, C((c + r - 4)/2, (r - 1)/2) if c is odd and r is odd.
G.f.: -(5*x^4+10*x^2+1)/((x-1)^11*(x+1)^5). [Colin Barker, Aug 06 2012]
a(n) = (1/(2*10!))*(n+2)*(n+4)*(n+6)*(n+8)*(n+10)*((n+1)*(n+3)*(n+5)*(n+7)*(n+9) + 1*3*5*7*9)- (1/6)*(1/2^8)*(n^4+22*n^3+170*n^2+539*n+579)*(1/2)*(1-(-1)^n). [Yosu Yurramendi, Jun 23 2013]
MATHEMATICA
CoefficientList[Series[-(5 x^4 + 10 x^2 + 1)/((x - 1)^11 (x + 1)^5), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 16 2013 *)
LinearRecurrence[{6, -10, -10, 50, -34, -66, 110, 0, -110, 66, 34, -50, 10, 10, -6, 1}, {1, 6, 36, 146, 511, 1512, 4032, 9752, 21942, 46252, 92504, 176484, 323554, 572264, 981024, 1634776}, 28] (* Ray Chandler, Sep 23 2015 *)
PROG
(Magma) [(1/(2*Factorial(10)))*(n+2)*(n+4)*(n+6)*(n+8)*(n+10)*((n+1)*(n+3)*(n+5)*(n+7)*(n+9)+1*3*5*7*9)-(1/6)*(1/2^8)*(n^4+22*n^3+170*n^2+539*n+579)*(1/2)*(1-(-1)^n): n in [0..40]]; // Vincenzo Librandi, Oct 16 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Winston C. Yang (yang(AT)math.wisc.edu)
STATUS
approved