[go: up one dir, main page]

login
A017781
Binomial coefficients C(65,n).
3
1, 65, 2080, 43680, 677040, 8259888, 82598880, 696190560, 5047381560, 31966749880, 179013799328, 895068996640, 4027810484880, 16421073515280, 60992558771040, 207374699821536, 648045936942300, 1867897112363100, 4981058966301600, 12321566916640800
OFFSET
0,2
COMMENTS
Row 65 of A007318.
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 0..65 (full sequence)
FORMULA
From G. C. Greubel, Nov 14 2018: (Start)
G.f.: (1+x)^65.
E.g.f.: 1F1(-65; 1; -x), where 1F1 is the confluent hypergeometric function. (End)
MAPLE
seq(binomial(65, n), n=0..65); # Nathaniel Johnston, Jun 24 2011
MATHEMATICA
Binomial[65, Range[0, 65]] (* G. C. Greubel, Nov 14 2018 *)
PROG
(Sage) [binomial(65, n) for n in range(18)] # Zerinvary Lajos, May 28 2009
(PARI) vector(65, n, n--; binomial(65, n)) \\ G. C. Greubel, Nov 14 2018
(Magma) [Binomial(65, n): n in [0..65]]; // G. C. Greubel, Nov 14 2018
KEYWORD
nonn,fini,full,easy
STATUS
approved