[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017520
a(n) = (11*n + 10)^12.
12
1000000000000, 7355827511386641, 1152921504606846976, 39959630797262576401, 614787626176508399616, 5688009063105712890625, 37133262473195501387776, 188031682201497672618081, 784716723734800033386496, 2812664781782894485727281
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
FORMULA
From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (1000000000000 + 7342827511386641*x + 1057373746958820643*x^2 + 25545119783261723711*x^3 + 183137251503172391205*x^4 + 488143704350667868074*x^5 + 528998728358533109886*x^6 + 234662813343627300126*x^7 + 39635845367890711434*x^8 + 2102226021911800565*x^9 + 21798715126193071*x^10 + 8916100448243*x^11 + x^12)/(1-x)^13.
E.g.f.: (1000000000000 + 7354827511386641*x + 569105424792036847*x^2 + 6087155460996032566*x^3 + 19243217071043901221*x^4 + 25018123360727376000*x^5 + 15895943833149490132*x^6 + 5437280856006223356*x^7 + 1053961441036472067*x^8 + 117674853236661875*x^9 + 7405264410708505*x^10 + 241373673336906*x^11 + 3138428376721*x^12)*exp(x). (End)
MAPLE
seq((11*n+10)^12, n=0..20); # G. C. Greubel, Oct 29 2019
MATHEMATICA
(11*Range[0, 20]+10)^12 (* Harvey P. Dale, Oct 14 2012 *)
PROG
(Maxima) makelist((11*n+10)^12, n, 0, 30); /* Martin Ettl, Oct 21 2012 */
(PARI) vector(21, n, (11*n-1)^12) \\ G. C. Greubel, Oct 29 2019
(Magma) [(11*n+10)^12: n in [0..20]]; // G. C. Greubel, Oct 29 2019
(Sage) [(11*n+10)^12 for n in (0..20)] # G. C. Greubel, Oct 29 2019
(GAP) List([0..20], n-> (11*n+10)^12); # G. C. Greubel, Oct 29 2019
CROSSREFS
Powers of the form (11*n+10)^m: A017509 (m=1), A017510 (m=2), A017511 (m=3), A017512 (m=4), A017513 (m=5), A017514 (m=6), A017515 (m=7), A017516 (m=8), A017517 (m=9), A017518 (m=10), A017519 (m=11), this sequence (m=12).
Sequence in context: A180616 A017184 A017280 * A017652 A168174 A291321
KEYWORD
nonn,easy
STATUS
approved