OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (12,-41,30).
FORMULA
a(n) = (1/20)-(25/4)*5^n+(36/5)*6^n. [Antonio Alberto Olivares, Feb 06 2010]
a(0)=1, a(1)=12, a(n)=11*a(n-1)-30*a(n-2)+1. - Vincenzo Librandi, Feb 10 2011
MAPLE
a:=n->sum(6^(n-j)-5^(n-j), j=0..n): seq(a(n), n=1..19); # Zerinvary Lajos, Jan 15 2007
MATHEMATICA
Table[(2^(n + 3)*3^(n + 1) - 5^(n + 2) + 1)/20, {n, 40}] (* and *) CoefficientList[Series[1/((1 - z) (1 - 5*z) (1 - 6*z)), {z, 0, 40}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2011 *)
LinearRecurrence[{12, -41, 30}, {1, 12, 103}, 30] (* Harvey P. Dale, Aug 24 2017 *)
PROG
(PARI) Vec(1/((1-x)*(1-5*x)(1-6*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved