[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015310
Gaussian binomial coefficient [ n,5 ] for q = -6.
4
1, -6665, 53308003, -412612541285, 3210953026617931, -24965159781954413525, 194133243948726244454635, -1509574711680960125598763925, 11738459947705882553575280369515, -91278255494743382265330154281509525
OFFSET
5,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Index entries for linear recurrences with constant coefficients, signature (-6665,8885778,1909009080,-69095809728,-403007063040,470184984576)
FORMULA
G.f.: -x^5 / ( (x-1)*(216*x+1)*(36*x-1)*(7776*x+1)*(1296*x-1)*(6*x+1) ). - R. J. Mathar, Aug 04 2016
MATHEMATICA
Table[QBinomial[n, 5, -6], {n, 5, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
PROG
(Sage) [gaussian_binomial(n, 5, -6) for n in range(5, 15)] # Zerinvary Lajos, May 27 2009
(Magma) r:=5; q:=-6; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Aug 03 2016
CROSSREFS
Sequence in context: A131645 A186086 A236733 * A043516 A046410 A326811
KEYWORD
sign,easy
AUTHOR
Olivier Gérard, Dec 11 1999
STATUS
approved