[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015306
Gaussian binomial coefficient [ n,5 ] for q = -3.
3
1, -182, 49777, -11662040, 2869444942, -694405675964, 168973319623174, -41041673208656120, 9974653139743515223, -2423717068608654822146, 588973263031690760850991, -143119691677080990521708240
OFFSET
5,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Index entries for linear recurrences with constant coefficients, signature (-182,16653,428220,-4046679,-10746918,14348907)
FORMULA
G.f.: x^5/((1-x)*(1+3*x)*(1-9*x)*(1+27*x)*(1-81*x)*(1+243*x)). - R. J. Mathar, Aug 03 2016
From G. C. Greubel, Sep 21 2019: (Start)
a(n) = (1 - 61*(-3)^(n-4) + 610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) + 61*(-3)^(4*n-10) - (-3)^(5*n-10))/17489920.
E.g.f.: exp(-243*x)*(-1 +1830*exp(216*x) -44469*exp(240*x) +59049*exp(244 *x) -16470*exp(252*x) +61*exp(324*x))/1032762286080. (End)
MAPLE
seq((1 - 61*(-3)^(n-4) + 610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) + 61*(-3)^(4*n-10) - (-3)^(5*n-10))/17489920, n=5..25); # G. C. Greubel, Sep 21 2019
MATHEMATICA
Table[QBinomial[n, 5, -3], {n, 5, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
PROG
(Sage) [gaussian_binomial(n, 5, -3) for n in range(5, 17)] # Zerinvary Lajos, May 27 2009
(PARI) a(n) = (1 - 61*(-3)^(n-4) + 610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) + 61*(-3)^(4*n-10) - (-3)^(5*n-10))/17489920 \\ G. C. Greubel, Sep 21 2019
(Magma) [(1 - 61*(-3)^(n-4) + 610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) + 61*(-3)^(4*n-10) - (-3)^(5*n-10))/17489920: n in [5..25]]; // G. C. Greubel, Sep 21 2019
(GAP) List([5..25], n-> (1 -61*(-3)^(n-4) +610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) +61*(-3)^(4*n-10) -(-3)^(5*n-10))/17489920); # G. C. Greubel, Sep 21 2019
CROSSREFS
Gaussian binomial coefficients [n,5]: A015305 (q=-2), this sequence (q=-3), A015308 (q=-4), A015309 (q=-5), A015310 (q=-6), A015312 (q=-7), A015313 (q=-8), A015315 (q=-9), A015316 (q=-10), A015317 (q=-11), A015319 (q=-12), A015321 (q=-13).
Sequence in context: A048546 A225712 A371805 * A190830 A145525 A028676
KEYWORD
sign,easy
AUTHOR
Olivier Gérard, Dec 11 1999
STATUS
approved