[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014148
a(n) = Sum_{m=1..n} Sum_{k=1..m} prime(k).
17
2, 7, 17, 34, 62, 103, 161, 238, 338, 467, 627, 824, 1062, 1343, 1671, 2052, 2492, 2993, 3561, 4200, 4912, 5703, 6577, 7540, 8600, 9761, 11025, 12396, 13876, 15469, 17189, 19040, 21028, 23155, 25431, 27858, 30442, 33189, 36103, 39190, 42456, 45903
OFFSET
1,1
COMMENTS
Previous name was: Apply partial sum operator twice to sequence of primes.
Numbers n such that a(n) is prime are listed in A122381(n) = {1, 2, 3, 6, 10, 23, 31, 46, 55, 58, 66, 70, 82, 91, 118, 131, 151, 163, 182, 187, 198, 199, ...}. Corresponding primes a(n) = a( A122381(n) ) = A122382(n) = {2, 7, 17, 103, 467, 6577, 17189, 61627, 109919, 130531, 198109, 239579, 399557, 559313, ...}. - Alexander Adamchuk, Aug 30 2006
Row 2 in A254858. - Reinhard Zumkeller, Feb 08 2015
Partial sums of A007504, n>=1. - Omar E. Pol, Nov 23 2016
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..10000 [extending prior b-File from Alexander Adamchuk]
FORMULA
Convolution of the primes with the positive integers: Sum_{k=1..n} (n-k+1)*prime(k). - David Scambler, Oct 08 2006
MAPLE
b:= proc(n) option remember; `if`(n<1, [0$2],
(p-> p+[ithprime(n), p[1]])(b(n-1)))
end:
a:= n-> b(n+1)[2]:
seq(a(n), n=1..42); # Alois P. Heinz, Oct 07 2021
MATHEMATICA
Table[Sum[Sum[Prime[k], {k, 1, m}], {m, 1, n}], {n, 1, 100}] (* Alexander Adamchuk, Aug 30 2006 *)
Accumulate[Accumulate[Prime[Range[50]]]] (* Harvey P. Dale, Dec 29 2011 *)
PROG
(Haskell)
a014148 n = a014148_list !! (n-1)
a014148_list = (iterate (scanl1 (+)) a000040_list) !! 2
-- Reinhard Zumkeller, Feb 08 2015
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Alexander Adamchuk, Aug 30 2006
Name changed by Wesley Ivan Hurt, Oct 04 2021
STATUS
approved