[go: up one dir, main page]

login
A003748
Number of 2-factors in K_5 X P_n.
1
12, 814, 41278, 2169266, 113488662, 5940718514, 310952704838, 16276223002786, 851946706852182, 44593472067545554, 2334157405518854758, 122176869250651741826, 6395107433748612174582, 334739295101566253176754, 17521268695699930046150918, 917116278846033398175880546
OFFSET
1,1
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
LINKS
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
FORMULA
a(1) = 12,
a(2) = 814,
a(3) = 41278, and
a(n) = 47a(n-1) + 288a(n-2) - 436a(n-3).
G.f.: -2*x*(218*x^2-125*x-6)/(436*x^3-288*x^2-47*x+1). - Colin Barker, Aug 30 2012
MATHEMATICA
CoefficientList[Series[-2 (218 x^2 - 125 x - 6)/(436 x^3 - 288 x^2 - 47 x + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 14 2013 *)
LinearRecurrence[{47, 288, -436}, {12, 814, 41278}, 20] (* Harvey P. Dale, May 05 2022 *)
PROG
(Magma) I:=[12, 814, 41278]; [n le 3 select I[n] else 47*Self(n-1)+288*Self(n-2)-436*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 14 2013
CROSSREFS
Sequence in context: A305935 A228182 A356186 * A280333 A350412 A207817
KEYWORD
nonn,easy
EXTENSIONS
Added recurrence from Faase's web page. - N. J. A. Sloane, Feb 03 2009
STATUS
approved